The Identification and Comparative Analysis of Non-Coding RNAs in Spores and Mycelia of Penicillium expansum

Author:

Lai Tongfei1,Yu Qinru1,Pan Jingjing1,Wang Jingjing1,Tang Zhenxing2ORCID,Bai Xuelian1,Shi Lue1,Zhou Ting1

Affiliation:

1. College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China

2. School of Culinary Arts, Tourism College of Zhejiang, Hangzhou 311231, China

Abstract

Penicillium expansum is the most popular post-harvest pathogen and causes blue mold disease in pome fruit and leads to significant economic losses worldwide every year. However, the fundamental regulation mechanisms of growth in P. expansum are unclear. Recently, non-coding RNAs (ncRNAs) have attracted more attention due to critical roles in normalizing gene expression and maintaining cellular genotypes in organisms. However, the research related to ncRNAs in P. expansum have not been reported. Therefore, to provide an overview of ncRNAs on composition, distribution, expression changes, and potential targets in the growth process, a comparative transcriptomic analysis was performed on spores and mycelia of P. expansum in the present study. A total of 2595 novel mRNAs, 3362 long non-coding RNAs (lncRNAs), 10 novel microRNAs (miRNAs), 86 novel small interfering RNAs (siRNAs), and 11,238 circular RNAs (circRNAs) were predicted and quantified. Of these, 1482 novel mRNAs, 5987 known mRNAs, 2047 lncRNAs, 40 miRNAs, 38 novel siRNAs, and 9235 circRNAs were differentially expressed (DE) in response to the different development stages. Afterward, the involved functions and pathways of DE RNAs were revealed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database enrichment analysis. The interaction networks between mRNAs, lncRNAs, and miRNAs were also predicted based on their correlation coefficient of expression profiles. Among them, it was found that miR168 family members may play important roles in fungal growth due to their central location in the network. These findings will contribute to a better understanding on regulation machinery at the RNA level on fungal growth and provide a theoretical basis to develop novel control strategies against P. expansum.

Funder

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3