Design of a Suspension Controller with an Adaptive Feedforward Algorithm for Ride Comfort Enhancement and Motion Sickness Mitigation

Author:

Kim Jinwoo1ORCID,Yim Seongjin1ORCID

Affiliation:

1. Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea

Abstract

This paper presents a design method of a suspension controller with an adaptive feedforward algorithm for ride comfort enhancement and motion sickness mitigation. Recently, it was shown that motion sickness is caused by combined heave and pitch motions of a sprung mass within the range of 0.8 and 8 Hz. For this reason, it is necessary to design a suspension controller for the purpose of reducing the heave and pitch vibration of a sprung mass within this range. To represent the heave acceleration and the pitch rate of a sprung mass, a 4-DOF half-car model is adopted as a vehicle model. For easy implementation in a real vehicle, a static output feedback control is adopted instead of a full-state one. To reduce the heave acceleration of a sprung mass for ride comfort enhancement, a linear quadratic SOF controller is designed. To reduce the pitch rate of a sprung mass for motion sickness mitigation, a filtered-X LMS algorithm is applied. To validate the method, simulation on vehicle simulation software is conducted. From the simulation results, it is shown that the proposed method is effective for ride comfort enhancement and motion sickness mitigation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3