Output Stabilization of Wavelength-Swept Laser Based on Closed-Loop Control of Fabry–Pérot Tunable Wavelength Filter for Fiber-Optic Sensors

Author:

Choi Byeong Kwon,Ahn Soyeon,Kim Ji Su,Pagidi Srinivas,Jeon Min YongORCID

Abstract

The output of a wavelength-swept laser (WSL) based on a fiber Fabry–Pérot tunable filter (FFP-TF) tends to shift the peak wavelength due to external temperature or heat generated by the FFP-TF itself. Therefore, when measuring the output of WSL for a long time, it is very difficult to accurately measure a signal in the temporal domain corresponding to a specific wavelength of the output of the WSL. If the wavelength variation of the WSL output can be predicted through the peak time information of the forward scan or the backward scan from the WSL, the variation of the peak wavelength can be compensated for by adjusting the offset voltage applied to the FFP-TF. This study presents a successful stabilization method for peak wavelength variation in WSLs by adjusting the offset voltage of the FFP-TF with closed-loop control. The closed-loop control is implemented by measuring the deviation in the WSL peak position in the temporal domain using the trigger signal of the function generator. The feedback repetition rate for WSL stabilization was approximately 0.2 s, confirming that the WSL output and the peak position for the fiber Bragg grating (FBG) reflection spectrum were kept constant within ±7 μs at the maximum when the stabilization loop was applied. The standard deviations of WSL output and reflection peak positions were 1.52 μs and 1.59 μs, respectively. The temporal and spectral domains have a linear relationship; the ±7 μs maximum variation of the peak position corresponded to ±0.035 nm of the maximum wavelength variation in the spectral domain. The proposed WSL system can be used as a light source for temperature or strain-dependent sensors as it compensates for the WSL wavelength variation in applications that do not require a fast scanning rate.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3