Abstract
Broadband wavelength-swept lasers (WSLs) are widely used as light sources in biophotonics and optical fiber sensors. Herein, we present a polygonal mirror scanning wavelength filter (PMSWF)-based broadband WSL using two semiconductor optical amplifiers (SOAs) with different center wavelengths as the gain medium. The 10-dB bandwidth of the wavelength scanning range with 3.6 kHz scanning frequency was approximately 223 nm, from 1129 nm to 1352 nm. When the scanning frequency of the WSL was increased, the intensity and bandwidth decreased. The main reason for this is that the laser oscillation time becomes insufficient as the scanning frequency increases. We analyzed the intensity and bandwidth decrease according to the increase in the scanning frequency in the WSL through the concept of saturation limit frequency. In addition, optical alignment is important for realizing broadband WSLs. The optimal condition can be determined by analyzing the beam alignment according to the position of the diffraction grating and the lenses in the PMSWF. This broadband WSL is specially expected to be used as a light source in broadband distributed dynamic FBG fiber-optic sensors.
Funder
National Research Foundation of Korea
Ministry of Educatio
The Competency Development Program for Industry Specialist
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献