Abstract
In order to make full use of the vibration energy in the process of attenuating vibration, an array piezoelectric coupled disc damper is developed, which works by converting part vibration energy into electrical energy. The piezoelectric damper is made of a pair of piezoelectric coupled discs built in a case cylinder. Its energy harvesting behavior is studied by a series of forced-vibration experiments and simulations. The influences of some factors, such as the excitation frequency, substrate thickness, the size of the piezoelectric patch, the paste form of the piezoelectric patch and the load resistance, on the energy harvesting behavior of the damper are analyzed and concluded. The experimental results show that the maximum peak-to-peak voltage and average power from one piezoelectric patch with an inner diameter of 35 mm, an outer diameter of 80 mm, and a thickness of 1 mm can reach up to 163 V and 161 mW, respectively. This research provides a practical piezoelectric damper attenuating harmful vibration by converting them into useful electric power, and the corresponding theoretical models are derived to predict its electrical output.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献