Fire Diurnal Cycle Derived from a Combination of the Himawari-8 and VIIRS Satellites to Improve Fire Emission Assessments in Southeast Australia

Author:

Zheng Yueming,Liu Jian,Jian Hongdeng,Fan Xiangtao,Yan FuliORCID

Abstract

The violent and persistent wildfires that broke out along the southeast coast of Australia in 2019 caused a large number of pollutant emissions, which seriously affected air quality and the global climate. The existing two methods for estimating combustion emissions based on burned area and fire radiative power mainly use a medium resolution imaging spectrometer (MODIS) on the Aqua and Terra satellites. However, the low temporal resolution of MODIS and insensitivity to small fires lead to deviation in the estimation of fire emissions. In order to solve this problem, the Visible Infrared Imaging Radiometer Suite (VIIRS) with better performance is adopted in this paper, combined with the fire diurnal cycle information obtained by geostationary satellite Himawari-8, to explore the spatio-temporal model of biomass combustion emissions. Using this, a high-spatial- and -temporal-resolution fire emission inventory was generated for southeastern Australia from November 2019 to January 2020, which aims to fully consider the highly dynamic nature of fires and small fires (low FRP) that are much lower than the MODIS burned area or active fire detection limit, with emphasis on dry matter burned (DMB). We found that during the study period, the fire gradually moved from north to south, and the diurnal cycle of the fire in the study area changed greatly. The peak time of the fire gradually delayed as the fire moved south. Our inventory shows that the DMB in southeast Australia during the study period was about 146 Tg, with major burned regions distributed along the Great Dividing Range, with December 2019 being the main burning period. The total DMB we calculated is 0.5–3.1 times that reported by the GFAS (Global Fire Assimilation System) and 1.5 to 4 times lower than that obtained using the traditional “Burned Area Based Method (FINN)”. We believe that the GFAS may underestimate the results by ignoring a large number of small fires, and that the excessive combustion rate used in the FINN may be a source of overestimation. Therefore, we conclude that the combination of high-temporal-resolution and high-spatial-resolution satellites can improve FRE estimation and may also allow further verification of biomass combustion estimates from different inventories, which are far better approaches for fire emission estimation.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3