Incorporating an Interactive Fire Plume‐Rise Model in the DOE's Energy Exascale Earth System Model Version 1 (E3SMv1) and Examining Aerosol Radiative Effect

Author:

Lu Zheng1ORCID,Liu Xiaohong1ORCID,Ke Ziming1ORCID,Zhang Kai2ORCID,Ma Po‐Lun2ORCID,Fan Jiwen23ORCID

Affiliation:

1. Texas A&M University College Station TX USA

2. Pacific Northwest National Laboratory Richland WA USA

3. Argonne National Laboratory Lemont IL USA

Abstract

AbstractThe vertical distribution of biomass burning aerosol (BBA) is important in regulating their impacts on weather and climate. The plume‐rise process affects the injection height of BBA and interacts with the air parcel lifting and cloud processes. However, these processes are not represented in most global climate models. In this study, we replaced the fixed vertical profiles of monthly BBA emissions in the Department of Energy's Energy Exascale Earth System Model version 1 (E3SMv1) with an interactive fire plume‐rise model. The vertical distribution of BBA emissions was calculated as a function of ambient thermodynamic conditions from the host E3SMv1, with distributions of fire sizes and sensible heat fluxes derived from the observations. The maximum fire radiative power (FRP) technique was used to determine the fire size. Scaling‐FRP technique is used to calculate the wildfire heat release. Daily BBA emission, superimposed with a fire diurnal cycle retrieved from the satellite observation, was included in model simulations. The model shows improved agreement with satellite retrievals and in situ measurement during the National Oceanic and Atmospheric Administration Wildfire Experiment for Cloud chemistry, Aerosol absorption, and Nitrogen campaign. The model‐observation comparison demonstrates the importance of the plume‐rise model and fire diurnal cycle assumption in determining the BBA fields. We also find that E3SMv1 with new features produces a larger carbonaceous aerosol burden, leading to 0.13 W m−2 warming at the top of atmosphere compared to the default E3SMv1. This highlights the importance of accurately representing the BBA injection height and indicates a no‐linear nature in the BBA‐induced radiative effect.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3