The Critical Role of Networks to Describe Disease Spreading Dynamics in Social Systems: A Perspective

Author:

Bellingeri Michele12ORCID,Bevacqua Daniele3,Scotognella Francesco4ORCID,Cassi Davide12

Affiliation:

1. Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze, 7/A, 43124 Parma, Italy

2. Istituto Nazione di Fisica Nucleare (INFN), Gruppo Collegato di Parma, Parco Area delle Scienze, 7/A, 43124 Parma, Italy

3. PSH, UR 1115, INRAE, Domaine Saint-Paul, 228 Route de l’Aérodrome, 84914 Avignon, France

4. Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

Abstract

This review underscores the critical significance of incorporating networks science in epidemiology. Classic mathematical compartmental models (CMs) employed to describe epidemic spreading may fail to capture the intricacies of real disease dynamics. Rooted in the mean-field assumption, CMs oversimplify by assuming that every individual has the potential to “infect” any other, neglecting the inherent complexity of underlying network structures. Since social interactions follow a networked pattern with specific links between individuals based on social behaviors, joining classic CMs and network science in epidemiology becomes essential for a more authentic portrayal of epidemic spreading. This review delves into noteworthy research studies that, from various perspectives, elucidate how the synergy between networks and CMs can enhance the accuracy of epidemic descriptions. In conclusion, we explore research prospects aimed at further elevating the integration of networks within the realm of epidemiology, recognizing its pivotal role in refining our understanding of disease dynamics.

Funder

Ecosister project

Italian Ministry of University and Research

Italian Ministry

Publisher

MDPI AG

Reference40 articles.

1. Epidemic Processes in Complex Networks;Castellano;Rev. Mod. Phys.,2015

2. A Network-Based Explanation of Why Most COVID-19 Infection Curves Are Linear;Thurner;Proc. Natl. Acad. Sci. USA,2020

3. Networks and Epidemic Models;Keeling;J. R. Soc. Interface,2005

4. Complex Social Networks Are Missing in the Dominant COVID-19 Epidemic Models;Manzo;Sociologica,2020

5. Salathé, M., and Jones, J.H. (2010). Dynamics and Control of Diseases in Networks with Community Structure. PLoS Comput. Biol., 6.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3