Outdoor Thermal Environments of Main Types of Urban Areas during Summer: A Field Study in Wuhan, China

Author:

Li KunORCID,Li Xuefei,Yao Keji

Abstract

Under the influence of the urban heat island effect, the thermal environments of urban built-up areas are poor, leading to the loss of urban vitality and the extreme deterioration of thermal comfort. In this paper, the outdoor thermal environment in Wuhan’s main urban area is studied via the use of field measurements. From June to August in the years 2015 to 2017, 20 measurement points were selected for monitoring from 08:00 to 19:00 h, which were located in spaces such as residential areas, parklands, commercial streets, and college/university campuses. The measurements for the same types of land and different types of land use are analyzed. A comprehensive thermal environment index is used to quantitatively evaluate the overall situations of thermal environments. The results showed that the cooling effect of vegetation shading was stronger than the effect of water evaporation and the maximum temperature difference between the two cooling methods reached 6.1 °C. The cooling effect of the canopy shading of tall trees was stronger than the effect of grassland transpiration and the maximum temperature difference was 2.8 °C. The streets with higher aspect ratios might improve the ventilation, but the wind speeds remained low, which did not provide a strong cooling effect. This study helps urban planners understand the thermal environment of Wuhan or similar cities with hot summer and diversified urban areas, and puts forward suggestions to reduce the heat island effect from the aspect of building layout, green coverage, shading mode, and street aspect ratio, so as to establish sustainable cities that are climate adaptable and environmentally friendly.

Funder

the basic work of science and technology of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3