Quantitative Study on the Effects of Street Geometries and Tree Configurations on the Outdoor Thermal Environment

Author:

Wu Jindong12,Wang Yu1,Li Shuhua2,Wu Qitao3,Lee Taecheol4ORCID,Yoon Seonghwan4ORCID

Affiliation:

1. China National Engineering Research Center for Human Settlements, China Architecture Design & Research Group, Xicheng District, Beijing 100044, China

2. School of Architecture, Tsinghua University, Haidian District, Beijing 100084, China

3. School of Design, Silla University, Sasang-gu, Busan 46958, Republic of Korea

4. Department of Architecture, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea

Abstract

Global warming and the urban heat island effect has aroused the attention of research on the outdoor thermal environment. As outdoor spaces often used by citizens, streets play an important role in improving the thermal environment. In this study, six factors relating to street geometries and tree configurations in Busan are measured and quantified to form 32 typical scenarios. The degree of importance of these six factors is evaluated based on ENVI-met simulation results, and GeoDetector is introduced to evaluate the interactions between the factors and their impacts on the outdoor thermal environment. This study confirms the significantly higher impact of street geometry factors on the air temperature and physiological equivalent temperature compared to tree configuration factors. Particularly, Hb/Ws shows the most significant impact during the research period. The impact of interactions between any two factors of street geometry is much higher than that of interactions between the geometry and tree configuration factors and that of interactions between the tree configuration factors. We recommend dynamically adjusting the relationship between street geometry and tree configurations in different situations to improve the outdoor thermal environment, especially at noon and in the afternoon.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3