Theory and Experiment of Cooperative Control at Multi-Intersections in Intelligent Connected Vehicle Environment: Review and Perspectives

Author:

Zhang Linan,Wang YizheORCID,Zhu Huaizhong

Abstract

A heterogeneous traffic flow consists of regular vehicles, and intelligent connected vehicles having interactive functions is updating the composition of the current urban-road network traffic flow. It has been a growing trend and will continue to be so. Because of the urgent demand, the research focused on three main parts of cooperative control methods under intelligent connected vehicles environment, typical traffic control application scenarios and experimental validation in intelligent connected vehicles conditions, and intersection-oriented hybrid traffic control mechanism for urban road. For heterogeneous interrupted traffic flow of intelligent connected vehicles, to analyze the characteristics and information extraction method of heterogeneous traffic flow of intelligent connected vehicles under different conditions, the research examined driving modes of regular vehicles and intelligent connected vehicles, including car following and lane changing. This study summarized control modes of traffic-signal control, active control of intelligent connected vehicles, and indirect control of regular vehicles through intelligent vehicles to study the active control mechanism and multi-intersection coordinated control strategy for intelligent connected vehicle heterogeneous traffic flow. With the combination of coordinated control theory, this work overviewed integrated experiment of information interaction and coordinated control under intelligent-connected-vehicle heterogeneous traffic-flow environments.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference92 articles.

1. Exploiting Wireless Communication in Vehicle Density Estimation

2. Real-time Density Estimation in Urban Environments by Using Vehicular Communications, Wireless Days;Sanguesa,2012

3. A V2I-Based Real-Time Traffic Density Estimation System in Urban Scenarios

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3