Cooperative GNSS-RTK Ambiguity Resolution with GNSS, INS, and LiDAR Data for Connected Vehicles

Author:

Qian ChuangORCID,Zhang Hongjuan,Li Wenzhuo,Tang Jian,Liu Hui,Li BijunORCID

Abstract

Intelligent vehicles and connected vehicles have garnered more and more attention recently, and both require accurate positions of the vehicles in their operation, which relies on navigation sensors such as Global Navigation Satellite System (GNSS), Inertial Navigation System (INS), Light Detection And Ranging (LiDAR) and so on. GNSS is the key sensor to obtain high accuracy positions in the navigation system, because GNSS Real Time Kinematic (RTK) with correct ambiguity resolution (AR) can provide centimeter-level absolute position. But AR may fail in the urban occlusion environment because of the limited satellite visibility for single vehicles. The navigation data from multiconnected vehicles can improve the satellite geometry significantly, which is able to help improve the AR, especially in occlusion environment. In this work, the GNSS, INS, and LiDAR data from multiconnected vehicles are jointly processed together to improve the GNSS RTK AR, and to obtain high accuracy positioning results, using a scan-to-map matching algorithm based on an occupancy likelihood map (OLM) for the relative position between the connected vehicles, a Damped Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method with least-squares for a relative AR between the connected vehicles, and a joint RTK algorithm for solving the absolute positioning for the vehicles by involving the relative position and relative ambiguity constraints. The experimental results show that the proposed approach can improve the AR for the connected vehicles with higher ratio values, success rates, and fixed rates, and achieve high-precision cooperative absolute positions compared with traditional GNSS RTK methods, especially in occlusion environments such as below a viaduct.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3