Abstract
Swordfish, Xiphias gladius (Linnaeus, 1758), is a commercially important species that is widely distributed throughout three oceans. This species inhabits oceanic waters with preferred environmental ranges and migrates vertically to the surface layer for feeding. However, the spatial distribution pattern and habitat preferences of swordfish have been rarely studied in the Pacific Ocean due to the wide geographic range of this species. This study examined the spatial distribution and preferred ranges of environmental variables for swordfish using two approaches, generalized additive models and habitat suitability index methods, with different spatio-temporal data resolution scales. Results indicated that sea surface temperature is the most important factor determining swordfish spatial distribution. Habitat spatial pattern and preferred environmental ranges, estimated using various modeling approaches, were robust relative to the spatio-temporal data resolution scales. The models were validated by examining the consistency between predictions and untrained actual observations, which all predicted a high relative density of swordfish in the tropical waters of the central Pacific Ocean, with no obvious seasonal movement. Results from this study, based on fishery and remote sensing data with wide spatial coverage, could benefit the conservation and management of fisheries for highly migratory species such as swordfish and tuna.
Funder
Ministry of Science and Technology, Taiwan
Fisheries Agency, Council of Agriculture
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献