Self-Adaptive Filtering for Ultra-Large-Scale Airborne LiDAR Data in Urban Environments Based on Object Primitive Global Energy Minimization

Author:

Hui Zhenyang12,Li Zhuoxuan12,Li Dajun12,Xu Yanan12,Wang Yuqian12ORCID

Affiliation:

1. Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake of Ministry of Natural Resources, East China University of Technology, Nanchang 330013, China

2. School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China

Abstract

Filtering from airborne LiDAR datasets in urban area is one important process during the building of digital and smart cities. However, the existing filters encounter poor filtering performance and heavy computational burden when processing large-scale and complicated urban environments. To tackle this issue, a self-adaptive filtering method based on object primitive global energy minimization is proposed in this paper. In this paper, mode points were first acquired for generating the mode graph. The mode points were the cluster centers of the LiDAR data obtained in a mean shift algorithm. The graph constructed with mode points was named “mode graph” in this paper. By defining the energy function based on the mode graph, the filtering process is transformed to iterative global energy minimization. In each iteration, the graph cuts technique was adopted to achieve global energy minimization. Meanwhile, the probability of each point belonging to the ground was updated, which would lead to a new refined ground surface using the points whose probabilities were greater than 0.5. This process was iterated until two successive fitted ground surfaces were determined to be close enough. Four urban samples with different urban environments were adopted for verifying the effectiveness of the filter developed in this paper. Experimental results indicate that the developed filter obtained the best filtering performance. Both the total error and the Kappa coefficient are superior to those of the other three classical filtering methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

China Post-Doctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3