A Building Detection Method Based on Semi-suppressed Fuzzy C-means and Restricted Region Growing Using Airborne LiDAR

Author:

Cai Zhan,Ma Hongchao,Zhang Liang

Abstract

Building detection using airborne Light Detection And Ranging (LiDAR) data is the essential prerequisite of many applications, including three-dimensional city modeling. In the paper, we propose a coarse-to-fine building detection method that is based on semi-suppressed fuzzy C-means and restricted region growing. Based on a filtering step, the remaining points can be separated into two groups by semi-suppressed fuzzy C-means. The group contains points that are located on building roofs that form a building candidate set. Subsequently, a restricted region growing algorithm is implemented to search for more building points. The proposed region growing method perfectly ensures the rapid growth of building regions and slow growth of non-building regions, which enlarges the area differences between building and non-building regions. A two-stage strategy is then adopted to remove tiny point clusters with small areas. Finally, a minimum bounding rectangle (MBR) is used to supplement the building points and refine the results of building detection. Experimental results on five datasets, including three datasets that were provided by the International Society for Photogrammetry and Remote Sensing (ISPRS) and two Chinese datasets, verify that most buildings and non-buildings can be well separated during our coarse building detection process. In addition, after refined processing, our proposed method can offer a high success rate for building detection, with over 89.5% completeness and a minimum 91% correctness. Hence, various applications can exploit our proposed method.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3