Abstract
Differently bound water molecules confined in hydrated hydroxypropyl cellulose (HPC) type MF and their mixtures (1:1 w/w) with lowly soluble salicylic acid and highly soluble sodium salicylate were investigated by differential scanning calorimetry (DSC). The obtained ice-melting DSC curves of the HPC/H2O samples were deconvoluted into multiple components, using a specially developed curve decomposition tool. The ice-melting enthalpies of the individual deconvoluted components were used to estimate the amounts of water in three states in the HPC matrix: free water (FW), freezing bound water (FBW), and non-freezing water (NFW). A search for an optimal number of Gaussian functions was carried out among all available samples of data and was based on the analysis of the minimum fitting error vs. the number of Gaussians. Finally, three Gaussians accounting for three fractions of water were chosen for further analysis. The results of the calculations are discussed in detail and compared to previously obtained experimental DSC data. AI/ML tools assisted in theory elaboration and indirect validation of the hypothetical mechanism of the interaction of water with the HPC polymer.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献