Evaluation of Anti-Obesity Activity of an Herbal Formulation (F2) in DIO Mice Model and Validation of UPLC-DAD Method for Quality Control

Author:

Pandeya Prakash RajORCID,Lee Kyung-Hee,Lamichhane Ramakanta,Lamichhane GopalORCID,Poudel AmritORCID,Jung Hyun-JuORCID

Abstract

Obesity is considered a chronic metabolic disorder that can be associated with multiple medical complications. Currently, there is no or limited curative therapy for obesity. This study focused on the assessment of anti-obesity activity and UPLC standardization of a polyherbal formulation (F2). An anti-obesity activity was investigated using the diet-induced obese (DIO) mice model, where obesity was developed in C57BL/6J mice by providing a high-fat diet (HFD) for five weeks without treating drugs. After the successful development of obesity, the obese mice were treated with F2 for seven weeks with continuing HFD feeding. The major obesity-related parameters such as body weight gain, food efficiency ratio, serum lipid profile, and white adipose tissue (WAT) mass were found to be significantly reduced in F2 treated obese mice. These results were supported by the down-regulation of specific adipogenic transcription factors (PPARγ, SREBP-1c, and ap2) in epididymal WAT. Histological evaluation of liver and WAT also revealed reduced fat deposition in the tissues by F2 compared to the HFD control group. The overall observations indicated that the F2 exhibited pronounced obesity-controlling activity through the inhibition of adipocyte differentiation and triglyceride accumulation in the tissues, and serum lipid depletion. In addition, F2 ameliorated obesity-induced insulin resistance. Furthermore, the UPLC-DAD method for quality control of F2 was validated and standardized using five reference compounds: astragalin, ellagic acid, fisetin, fustin, and sulfuretin.

Funder

Wonkwang University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3