Abstract
Job cycle time is the cycle time of a job or the time required to complete a job. Prediction of job cycle time is a critical task for a semiconductor fabrication factory. A predictive model must forecast job cycle time to pursue sustainable development, meet customer requirements, and promote downstream operations. To effectively predict job cycle time in semiconductor fabrication factories, we propose an effective hybrid approach combining the fuzzy c-means (FCM)-based genetic algorithm (GA) and a backpropagation network (BPN) to predict job cycle time. All job records are divided into two datasets: the first dataset is for clustering and training, and the other is for testing. An FCM-based GA classification method is developed to pre-classify the first dataset of job records into several clusters. The classification results are then fed into a BPN predictor. The BPN predictor can predict the cycle time and compare it with the second dataset. Finally, we present a case study using the actual dataset obtained from a semiconductor fabrication factory to demonstrate the effectiveness and efficiency of the proposed approach.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献