Development of Defect Detection AI Model for Wire + Arc Additive Manufacturing Using High Dynamic Range Images

Author:

Lee Chaekyo,Seo Gijeong,Kim Duck Bong,Kim Minjae,Shin Jong-Ho

Abstract

Wire + arc additive manufacturing (WAAM) utilizes a welding arc as a heat source and a metal wire as a feedstock. In recent years, WAAM has attracted significant attention in the manufacturing industry owing to its advantages: (1) high deposition rate, (2) low system setup cost, (3) wide diversity of wire materials, and (4) sustainability for constructing large-sized metal structures. However, owing to the complexity of arc welding in WAAM, more research efforts are required to improve its process repeatability and advance part qualification. This study proposes a methodology to detect defects of the arch welding process in WAAM using images acquired by a high dynamic range camera. The gathered images are preprocessed to emphasize features and used for an artificial intelligence model to classify normal and abnormal statuses of arc welding in WAAM. Owing to the shortage of image datasets for defects, transfer learning technology is adopted. In addition, to understand and check the basis of the model’s feature learning, a gradient-weighted class activation mapping algorithm is applied to select a model that has the correct judgment criteria. Experimental results show that the detection accuracy of the metal transfer region-of-interest (RoI) reached 99%, whereas that of the weld-pool and bead RoI was 96%.

Funder

National Research Foundation of Korea

Institute for Information & Communications Technology Planning & Evaluation

National Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3