Physics-Informed Approximation of Internal Thermal History for Surface Deformation Predictions in Wire Arc Directed Energy Deposition

Author:

Zamiela Christian12,Stokes Ryan32,Tian Wenmeng12,Doude Haley42,Priddy Matthew W.32,Bian Linkan52

Affiliation:

1. Mississippi State University Department of Industrial and Systems Engineering, , Mississippi State, MS 39762 ;

2. Center for Advance Vehicular Systems (CAVS) , Starkville, MS 39759

3. Mississippi State University Michael W. Hall School of Mechanical Engineering, , Mississippi State, MS 39762 ;

4. Mississippi State University , Starkville, MS 39759

5. Mississippi State University Department of Industrial and Systems Engineering, , Mississippi State, MS 39762;

Abstract

Abstract This work presents a physics-informed fusion methodology for deformation detection using multi-sensor thermal data. A challenge with additive manufacturing (AM) is that abnormalities commonly occur due to rapid changes in the thermal gradient. Different non-destructive in-situ thermal sensors capture parts of the thermal history but are limited by the visible temperature spectrum and sensor field of view of the fabrication process. Various sensors mitigate problems with the loss of thermal history information; however, it brings forth challenges with integrating different data streams and the need to interpolate the internal thermal history. This study develops a thermal data-informed heat flux methodology that fills the gap in fusing numerical temperature approximation with data-driven knowledge of the surface of additive manufactured components. First, this study fuses infrared (IR) thermal data complexities during the AM process with the Goldak double ellipsoidal heat flux to model the energy input into the component. Second, a thermal physics-informed model input (PIMI) is created with thermal data-informed heat flux to capture internal thermal history. Lastly, a regression convolutional neural network (CNN) captures the relationship between the three-dimensional thermal gradient and the resulting surface deformation. The rapid thermal gradient formation and identification of deformation is a key step toward using thermal history data and machine learning to improve quality control in AM. The proposed surface deformation detection model achieved an mean squared error of 1.14 mm and an R2 of 0.89 in the case study when fabricating thin-walled structures.

Funder

U.S. Army Corps of Engineers

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3