Improved Ensemble Learning for Wind Turbine Main Bearing Fault Diagnosis

Author:

Beretta MattiaORCID,Vidal YolandaORCID,Sepulveda Jose,Porro OlgaORCID,Cusidó JordiORCID

Abstract

The goal of this paper is to develop, implement, and validate a methodology for wind turbines’ main bearing fault prediction based on an ensemble of an artificial neural network (normality model designed at turbine level) and an isolation forest (anomaly detection model designed at wind park level) algorithms trained only on SCADA data. The normal behavior and the anomalous samples of the wind turbines are identified and several interpretable indicators are proposed based on the predictions of these algorithms, to provide the wind park operators with understandable information with enough time to plan operations ahead and avoid unexpected costs. The stated methodology is validated in a real underproduction wind park composed by 18 wind turbines.

Funder

Agència de Gestió d'Ajuts Universitaris i de Recerca

Centro para el Desarrollo Tecnológico Industrial

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Energy, Renewables Alone?;Reader,2020

2. Wind Energy in Europe in 2018—Trends and Statistics;Europe,2019

3. Renewable Power Generation Costs in 2019;Agency,2020

4. A big data driven sustainable manufacturing framework for condition-based maintenance prediction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3