A Review of machine learning techniques for wind turbine’s fault detection, diagnosis, and prognosis
Author:
Affiliation:
1. School of Computing, Gachon University, Seongnam-Si, Gyeonggi-Do, South Korea
2. Department of Computer Engineering, Major of Electronic Engineering, Institute of Information Science Technology, Jeju National University, Jeju, South Korea
Funder
Korea Technology and Information Promotion Agency for SME
Publisher
Informa UK Limited
Subject
Renewable Energy, Sustainability and the Environment
Link
https://www.tandfonline.com/doi/pdf/10.1080/15435075.2023.2217901
Reference104 articles.
1. Fault diagnosis of wind turbine structures using decision tree learning algorithms with big data
2. Abid, K., M. Sayed Mouchaweh, and L. Cornez. 2018. “Fault prognostics for the predictive maintenance of wind turbines: state of the art.” In Joint european conference on machine learning and knowledge discovery in databases, Dublin, Ireland, 113–25. Springer.
3. Non-polluting power supply solutions for homes;Adina T.;Annals Of’constantin Brancusi’university of Targu-Jiu: Engineering Series (4),2018
4. Machine learning-based wind speed time series analysis
5. Vibration based fault diagnostics in a wind turbine planetary gearbox using machine learning
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Anomaly detection of wind turbines based on stationarity analysis of SCADA data;Renewable Energy;2024-10
2. Ensemble learning framework for fleet-based anomaly detection using wind turbine drivetrain components vibration data.;Engineering Applications of Artificial Intelligence;2024-07
3. Fault detection and isolation of floating wind turbine pitch system based on Kalman filter and multi-attention 1DCNN;Systems Science & Control Engineering;2024-06-04
4. Damage identification of wind turbine blades based on deep learning and ultrasonic testing;Nondestructive Testing and Evaluation;2024-02-28
5. Wind turbine generator early fault diagnosis using LSTM-based stacked denoising autoencoder network and stacking algorithm;International Journal of Green Energy;2024-02-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3