Open Loop Position Control of Soft Hydraulic Actuators for Minimally Invasive Surgery

Author:

Runciman MarkORCID,Avery JamesORCID,Darzi AraORCID,Mylonas GeorgeORCID

Abstract

Minimally invasive surgery (MIS) presents many constraints on the design of robotic devices that can assist medical staff with a procedure. The limitations of conventional, rigid robotic devices have sparked interest in soft robotic devices for medical applications. However, problems still remain with the force exertion and positioning capabilities of soft robotic actuators, in conjunction with size restrictions necessary for MIS. In this article we present hydraulically actuated soft actuators that demonstrate highly repeatable open loop positioning and the ability to exert significant forces in the context of MIS. Open loop position control is achieved by changing the actuator volume, which causes contraction. In one degree of freedom (DOF) configurations, root mean square error (RMSE) values of 0.471 mm, 1.506 mm, and 0.350 mm were recorded for a single actuator against gravity, a single actuator with a pulley, and a horizontal antagonistic configuration, respectively. Hysteresis values of 0.711 mm, 0.958 mm, and 0.515 mm were reported in these experiments. In addition, different numbers of soft actuators were used in configurations two and three DOFs to demonstrate position control. When deactivated, the soft actuators are low-profile and flexible as they are constructed from thin films. As such, a robot with a deployable structure and three soft actuators was constructed. The robot is therefore able to reversibly transition from low to high volume and stiffness, which has potential applications in MIS. A user successfully controlled the deployable robot in a circle tracing task.

Funder

NIHR Imperial Biomedical Research Centre

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3