Efficient Hair Damage Detection Using SEM Images Based on Convolutional Neural Network

Author:

Man Qiaoyue,Zhang Lintong,Cho Youngim

Abstract

With increasing interest in hairstyles and hair color, bleaching, dyeing, straightening, and curling hair is being widely used worldwide, and the chemical and physical treatment of hair is also increasing. As a result, hair has suffered a lot of damage, and the degree of damage to hair has been measured only by the naked eye or touch. This has led to serious consequences, such as hair damage and scalp diseases. However, although these problems are serious, there is little research on hair damage. With the advancement of technology, people began to be interested in preventing and reversing hair damage. Manual observation methods cannot accurately and quickly identify hair damage areas. In recent years, with the rise of artificial intelligence technology, a large number of applications in various scenarios have given researchers new methods. In the project, we created a new hair damage data set based on SEM (scanning electron microscope) images. Through various physical and chemical analyses, we observe the changes in the hair surface according to the degree of hair damage, found the relationship between them, used a convolutional neural network to recognize and confirm the degree of hair damage, and categorized the degree of damage into weak damage, moderate damage and high damage.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3