Abstract
Infrared thermography is a non-invasive and accessible tool that maps the surface temperature of a body. This technology is particularly useful for diabetic foot disorders, since it facilitates the identification of higher risk patients by frequent monitoring and therefore limits the incidence of disabling conditions. The aim of this work is to provide a methodology to explore the entire plantar aspects of both feet, based on infrared thermography, for the assessment of diabetic foot anomalies. A non-invasive methodology was established to identify areas of higher risk and track their progress via longitudinal monitoring. A standard morphological model was extracted from a group of healthy subjects, nine females and 13 males, by spatial image registration. This healthy foot model can be taken as a template for the assessment of temperature asymmetry, even in cases in which partial amputations or deformations are present. A pixel-wise comparison of the temperature patterns was carried out by Wilcoxon´s matched-pairs test using the corresponding template. For all the subjects, the left foot was compared to the contralateral foot, the right one, providing a map of statistically significant areas of variation, within the template, among the healthy subjects at different time points. In the female case, the main areas of variability were the boundaries of the feet, whereas for the male, in addition to this, substantial changes that exhibited a clear pattern were observed. A fast and simple monitoring tool is provided to be used for personalized medical diagnosis in patients affected by diabetic foot disorders.
Funder
Cabildo de Tenerife
Agencia Canaria de Investigación, Innovación y Sociedad de la Información
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献