State-of-the-Art Features for Early-Stage Detection of Diabetic Foot Ulcers Based on Thermograms

Author:

Arteaga-Marrero Natalia1ORCID,Hernández-Guedes Abián23ORCID,Ortega-Rodríguez Jordan1ORCID,Ruiz-Alzola Juan124ORCID

Affiliation:

1. Grupo Tecnología Médica IACTEC, Instituto de Astrofísica de Canarias (IAC), 38205 San Cristóbal de La Laguna, Spain

2. Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain

3. Instituto Universitario de Microelectrónica Aplicada (IUMA), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain

4. Departamento de Señales y Comunicaciones, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain

Abstract

Diabetic foot ulcers represent the most frequently recognized and highest risk factor among patients affected by diabetes mellitus. The associated recurrent rate is high, and amputation of the foot or lower limb is often required due to infection. Analysis of infrared thermograms covering the entire plantar aspect of both feet is considered an emerging area of research focused on identifying at an early stage the underlying conditions that sustain skin and tissue damage prior to the onset of superficial wounds. The identification of foot disorders at an early stage using thermography requires establishing a subset of relevant features to reduce decision variability and data misinterpretation and provide a better overall cost–performance for classification. The lack of standardization among thermograms as well as the unbalanced datasets towards diabetic cases hinder the establishment of this suitable subset of features. To date, most studies published are mainly based on the exploitation of the publicly available INAOE dataset, which is composed of thermogram images of healthy and diabetic subjects. However, a recently released dataset, STANDUP, provided data for extending the current state of the art. In this work, an extended and more generalized dataset was employed. A comparison was performed between the more relevant and robust features, previously extracted from the INAOE dataset, with the features extracted from the extended dataset. These features were obtained through state-of-the-art methodologies, including two classical approaches, lasso and random forest, and two variational deep learning-based methods. The extracted features were used as an input to a support vector machine classifier to distinguish between diabetic and healthy subjects. The performance metrics employed confirmed the effectiveness of both the methodology and the state-of-the-art features subsequently extracted. Most importantly, their performance was also demonstrated when considering the generalization achieved through the integration of input datasets. Notably, features associated with the MCA and LPA angiosomes seemed the most relevant.

Funder

IACTEC Technological Training program

European Regional Development Fund

Agencia Canaria de Investigacion, Innovacion y Sociedad de la Información

European Social Fund

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3