Point Cloud Scene Completion of Obstructed Building Facades with Generative Adversarial Inpainting

Author:

Chen JingdaoORCID,Yi John Seon KeunORCID,Kahoush Mark,Cho Erin S.,Cho Yong K.ORCID

Abstract

Collecting 3D point cloud data of buildings is important for many applications such as urban mapping, renovation, preservation, and energy simulation. However, laser-scanned point clouds are often difficult to analyze, visualize, and interpret due to incompletely scanned building facades caused by numerous sources of defects such as noise, occlusions, and moving objects. Several point cloud scene completion algorithms have been proposed in the literature, but they have been mostly applied to individual objects or small-scale indoor environments and not on large-scale scans of building facades. This paper introduces a method of performing point cloud scene completion of building facades using orthographic projection and generative adversarial inpainting methods. The point cloud is first converted into the 2D structured representation of depth and color images using an orthographic projection approach. Then, a data-driven 2D inpainting approach is used to predict the complete version of the scene, given the incomplete scene in the image domain. The 2D inpainting process is fully automated and uses a customized generative-adversarial network based on Pix2Pix that is trainable end-to-end. The inpainted 2D image is finally converted back into a 3D point cloud using depth remapping. The proposed method is compared against several baseline methods, including geometric methods such as Poisson reconstruction and hole-filling, as well as learning-based methods such as the point completion network (PCN) and TopNet. Performance evaluation is carried out based on the task of reconstructing real-world building facades from partial laser-scanned point clouds. Experimental results using the performance metrics of voxel precision, voxel recall, position error, and color error showed that the proposed method has the best performance overall.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Removal of Non-Architectural Elements in 3D Models of Historic Buildings with Language Embedded Radiance Fields;Heritage;2024-06-18

2. LiDAR Inpainting of UAV Based 3D Point Cloud Using Supervised Learning;Lecture Notes in Computer Science;2023-11-27

3. PS-Insar point cloud densification using Sentinel-1 and TerraSAR-X data;International Journal of Remote Sensing;2023-10-18

4. Airborne Lidar Data Artifacts: What we know thus far;IEEE Geoscience and Remote Sensing Magazine;2023-09

5. A Dynamic 3D Point Cloud Dataset for Immersive Applications;Proceedings of the 14th Conference on ACM Multimedia Systems;2023-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3