Efficient Surrogate Modeling and Design Optimization of Compact Integrated On-Chip Inductors Based on Multi-Fidelity EM Simulation Models

Author:

Kurgan PiotrORCID

Abstract

High-performance and small-size on-chip inductors play a critical role in contemporary radio-frequency integrated circuits. This work presents a reliable surrogate modeling technique combining low-fidelity EM simulation models, response surface approximations based on kriging interpolation, and space mapping technology. The reported method is useful for the development of broadband and highly accurate data-driven models of integrated inductors within a practical timeframe, especially in terms of the computational expense of training data acquisition. Application of the constructed surrogate model for rapid design optimization of a compact on-chip inductor is demonstrated. The optimized EM-validated design solution can be reached at a low computational cost, which is a considerable improvement over existing approaches. In addition, this work provides a description and illustrates the usefulness of a multi-fidelity design optimization method incorporating EM computational models of graduated complexity and local polynomial approximations managed by an output space mapping optimization framework. As shown by the application example, the final design solution is obtained at the cost of a few high-fidelity EM simulations of a small-size integrated coil. A supplementary description of variable-fidelity EM computational models and a trade-off between model accuracy and its processing time complements the work.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Response Approximation on Accuracy of Surrogate Modeling of On-Chip Spiral Inductor;Russian Physics Journal;2023-11

2. Inductor Synthesis Technique Based on Surrogate Modeling;2023 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT);2023-05-15

3. CFD Analysis and Optimum Design for a Centrifugal Pump Using an Effectively Artificial Intelligent Algorithm;Micromachines;2022-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3