A Joint Constraint Incentive Mechanism Algorithm Utilizing Coverage and Reputation for Mobile Crowdsensing

Author:

Zhang Jing,Yang Xiaoxiao,Feng Xin,Yang Hongwei,Ren An

Abstract

Selection of the optimal users to maximize the quality of the collected sensing data within a certain budget range is a crucial issue that affects the effectiveness of mobile crowdsensing (MCS). The coverage of mobile users (MUs) in a target area is relevant to the accuracy of sensing data. Furthermore, the historical reputation of MUs can reflect their previous behavior. Therefore, this study proposes a coverage and reputation joint constraint incentive mechanism algorithm (CRJC-IMA) based on Stackelberg game theory for MCS. First, the location information and the historical reputation of mobile users are used to select the optimal users, and the information quality requirement will be satisfied consequently. Second, a two-stage Stackelberg game is applied to analyze the sensing level of the mobile users and obtain the optimal incentive mechanism of the server center (SC). The existence of the Nash equilibrium is analyzed and verified on the basis of the optimal response strategy of mobile users. In addition, mobile users will adjust the priority of the tasks in time series to enable the total utility of all their tasks to reach a maximum. Finally, the EM algorithm is used to evaluate the data quality of the task, and the historical reputation of each user will be updated accordingly. Simulation experiments show that the coverage of the CRJC-IMA is higher than that of the CTSIA. The utility of mobile users and SC is higher than that in STD algorithms. Furthermore, the utility of mobile users with the adjusted task priority is greater than that without a priority order.

Funder

National Key Research and Development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3