Bidirectional Segmented Detection of Land Use Change Based on Object-Level Multivariate Time Series

Author:

Hao Yuzhu,Chen ZhenjieORCID,Huang Qiuhao,Li Feixue,Wang Beibei,Ma Lei

Abstract

High-precision information regarding the location, time, and type of land use change is integral to understanding global changes. Time series (TS) analysis of remote sensing images is a powerful method for land use change detection. To address the complexity of sample selection and the salt-and-pepper noise of pixels, we propose a bidirectional segmented detection (BSD) method based on object-level, multivariate TS, that detects the type and time of land use change from Landsat images. In the proposed method, based on the multiresolution segmentation of objects, three dimensions of object-level TS are constructed using the median of the following indices: the normalized difference vegetation index (NDVI), the normalized difference built index (NDBI), and the modified normalized difference water index (MNDWI). Then, BSD with forward and backward detection is performed on the segmented objects to identify the types and times of land use change. Experimental results indicate that the proposed BSD method effectively detects the type and time of land use change with an overall accuracy of 90.49% and a Kappa coefficient of 0.86. It was also observed that the median value of a segmented object is more representative than the commonly used mean value. In addition, compared with traditional methods such as LandTrendr, the proposed method is competitive in terms of time efficiency and accuracy. Thus, the BSD method can promote efficient and accurate land use change detection.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3