A Novel Multi-Objective Hybrid Election Algorithm for Higher-Order Random Satisfiability in Discrete Hopfield Neural Network

Author:

Karim Syed AnayetORCID,Kasihmuddin Mohd Shareduwan MohdORCID,Sathasivam Saratha,Mansor Mohd. AsyrafORCID,Jamaludin Siti Zulaikha MohdORCID,Amin Md Rabiol

Abstract

Hybridized algorithms are commonly employed to improve the performance of any existing method. However, an optimal learning algorithm composed of evolutionary and swarm intelligence can radically improve the quality of the final neuron states and has not received creative attention yet. Considering this issue, this paper presents a novel metaheuristics algorithm combined with several objectives—introduced as the Hybrid Election Algorithm (HEA)—with great results in solving optimization and combinatorial problems over a binary search space. The core and underpinning ideas of this proposed HEA are inspired by socio-political phenomena, consisting of creative and powerful mechanisms to achieve the optimal result. A non-systematic logical structure can find a better phenomenon in the study of logic programming. In this regard, a non-systematic structure known as Random k Satisfiability (RANkSAT) with higher-order is hosted here to overcome the interpretability and dissimilarity compared to a systematic, logical structure in a Discrete Hopfield Neural Network (DHNN). The novelty of this study is to introduce a new multi-objective Hybrid Election Algorithm that achieves the highest fitness value and can boost the storage capacity of DHNN along with a diversified logical structure embedded with RANkSAT representation. To attain such goals, the proposed algorithm tested four different types of algorithms, such as evolutionary types (Genetic Algorithm (GA)), swarm intelligence types (Artificial Bee Colony algorithm), population-based (traditional Election Algorithm (EA)) and the Exhaustive Search (ES) model. To check the performance of the proposed HEA model, several performance metrics, such as training–testing, energy, similarity analysis and statistical analysis, such as the Friedman test with convergence analysis, have been examined and analyzed. Based on the experimental and statistical results, the proposed HEA model outperformed all the mentioned four models in this research.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3