Energy-Efficient Virtual Network Embedding Algorithm Based on Hopfield Neural Network

Author:

He Mengyang1ORCID,Zhuang Lei1ORCID,Yang Sijin1,Zhang Jianhui2,Meng Huiping3

Affiliation:

1. School of Information and Engineering, Zhengzhou University, Zhengzhou, Henan, China

2. China National Digital Switching System Engineering & Technological R&D Center, China

3. State Grid Henan Information & Telecommunication Company (Data Center), China

Abstract

To solve the energy-efficient virtual network embedding problem, this study proposes an embedding algorithm based on Hopfield neural network. An energy-efficient virtual network embedding model was established. Wavelet diffusion was performed to take the structural feature value into consideration and provide a candidate set for virtual network embedding. In addition, the Hopfield network was used in the candidate set to solve the virtual network energy-efficient embedding problem. The augmented Lagrangian multiplier method was used to transform the energy-efficient virtual network embedding constraint problem into an unconstrained problem. The resulting unconstrained problem was used as the energy function of the Hopfield network, and the network weight was iteratively trained. The energy-efficient virtual network embedding scheme was obtained when the energy function was balanced. To prove the effectiveness of the proposed algorithm, we designed two experimental environments, namely, a medium-sized scenario and a small-sized scenario. Simulation results show that the proposed algorithm achieved a superior performance and effectively decreased the energy consumption relative to the other methods in both scenarios. Furthermore, the proposed algorithm reduced the number of open nodes and open links leading to a reduction in the overall power consumption of the virtual network embedding process, while ensuring the average acceptance ratio and the average ratio of the revenue and cost.

Funder

State Grid Corporation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3