Single- and Multi-Objective Modified Aquila Optimizer for Optimal Multiple Renewable Energy Resources in Distribution Network

Author:

Ali Mohammed HamoudaORCID,Salawudeen Ahmed TijaniORCID,Kamel SalahORCID,Salau Habeeb Bello,Habil MonierORCID,Shouran MokhtarORCID

Abstract

Nowadays, the electrical power system has become a more complex, interconnected network that is expanding every day. Hence, the power system faces many problems such as increasing power losses, voltage deviation, line overloads, etc. The optimization of real and reactive power due to the installation of energy resources at appropriate buses can minimize the losses and improve the voltage profile, especially for congested networks. As a result, the optimal distributed generation allocation (ODGA) problem is considered a more proper tool for the processes of planning and operation of power systems due to the power grid changes expeditiously based on the type and penetration level of renewable energy sources (RESs). This paper modifies the AO using a quasi-oppositional-based learning operator to address this problem and reduce the burden on the primary grid, making the grid more resilient. To demonstrate the effectiveness of the MAO, the authors first test the algorithm performance on twenty-three competitions on evolutionary computation benchmark functions, considering different dimensions. In addition, the modified Aquila optimizer (MAO) is applied to tackle the optimal distributed generation allocation (ODGA) problem. The proposed ODGA methodology presented in this paper has a multi-objective function that comprises decreasing power loss and total voltage deviation in a distribution system while keeping the system operating and security restrictions in mind. Many publications investigated the effect of expanding the number of DGs, whereas others found out the influence of DG types. Here, this paper examines the effects of different types and capacities of DG units at the same time. The proposed approach is tested on the IEEE 33-bus in different cases with several multiple DG types, including multi-objectives. The obtained simulation results are compared to the Aquila optimizer, particle swarm optimization algorithm, and trader-inspired algorithm. According to the comparison, the suggested approach provides a superior solution for the ODGA problem with faster convergence in the DNs.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3