Benchmarking Perception to Streaming Inputs in Vision-Centric Autonomous Driving

Author:

Jin Tianshi1ORCID,Ding Weiping1,Yang Mingliang1,Zhu Honglin1ORCID,Dai Peisong1

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

In recent years, vision-centric perception has played a crucial role in autonomous driving tasks, encompassing functions such as 3D detection, map construction, and motion forecasting. However, the deployment of vision-centric approaches in practical scenarios is hindered by substantial latency, often deviating significantly from the outcomes achieved through offline training. This disparity arises from the fact that conventional benchmarks for autonomous driving perception predominantly conduct offline evaluations, thereby largely overlooking the latency concerns prevalent in real-world deployment. Although a few benchmarks have been proposed to address this limitation by introducing effective evaluation methods for online perception, they do not adequately consider the intricacies introduced by the complexity of input information streams. To address this gap, we propose the Autonomous driving Streaming I/O (ASIO) benchmark, aiming to assess the streaming input characteristics and online performance of vision-centric perception in autonomous driving. To facilitate this evaluation across diverse streaming inputs, we initially establish a dataset based on the CARLA Leaderboard. In alignment with real-world deployment considerations, we further develop evaluation metrics based on information complexity specifically tailored for streaming inputs and streaming performance. Experimental results indicate significant variations in model performance and ranking under different major camera deployments, underscoring the necessity of thoroughly accounting for the influences of model latency and streaming input characteristics during real-world deployment. To enhance streaming performance consistently across distinct streaming input features, we introduce a backbone switcher based on the identified streaming input characteristics. Experimental validation demonstrates its efficacy in perpetually improving streaming performance across varying streaming input features.

Funder

Natural Science Foundation of Sichuan Province

SWJTU Science and Technology Innovation Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3