A GIS-Based Approach to Inform Agriculture-Water-Energy Nexus Planning in the North Western Sahara Aquifer System (NWSAS)

Author:

Almulla YoussefORCID,Ramirez CamiloORCID,Pegios Konstantinos,Korkovelos AlexandrosORCID,Strasser Lucia de,Lipponen Annukka,Howells Mark

Abstract

The North Western Sahara Aquifer System (NWSAS) is a vital groundwater source in a notably water-scarce region. However, impetuous agricultural expansion and poor resource management (e.g., over-irrigation, inefficient techniques) over the past decades have raised a number of challenges. In this exploratory study, we introduce an open access GIS-based model to help answer selected timely questions related to the agriculture, water and energy nexus in the region. First, the model uses spatial and tabular data to identify the location and extent of irrigated cropland. Then, it employs spatially explicit climatic datasets and mathematical formulation to estimate water and electricity requirements for groundwater irrigation in all identified locations. Finally, it evaluates selected supply options to meet the electricity demand and suggests the least-cost configuration in each location. Results indicate that full irrigation in the basin requires ~3.25 billion million m3 per year. This translates to ~730 GWh of electricity. Fossil fuels do provide the least-cost electricity supply option due to lower capital and subsidized operating costs. Hence, to improve the competitiveness of renewable technologies (RT) (i.e., solar), a support scheme to drop the capital cost of RTs is critically needed. Finally, moving towards drip irrigation can lead to ~47% of water abstraction savings in the NWSAS area.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference55 articles.

1. The 2030 Agenda for Sustainable Development,2015

2. Understanding the Nexus. Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexus;Hoff,2011

3. Beyond Scarcity: Water Security in the Middle East and North Africa

4. Integrated analysis of climate change, land-use, energy and water strategies

5. A Methodology to Assess the Water Energy Food Ecosystems Nexus in Transboundary River Basins

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3