Abstract
There are two types of metasurfaces, reflect-array and transmit-array,—which are classified on the basis of structural features. In this paper, we design a transmit-array metasurface for y-polarized incidence which is characterized by having a transmission spectrum with a narrow dip (i.e., less than 3 nm). Furthermore, a tunable polarizer is achieved using linear geometric configurations, realizing a transmittivity ratio between x- and y-polarized incidence ranging from 0.031% to 1%. Based on the narrow-band polarization sensitivity of our polarizer, a biosensor was designed to detect an environmental refractive index ranging from 1.30 to 1.39, with a factor of sensitivity S = 192 nm/RIU and figure of merit (FOM) = 64/RIU. In the case of a narrow-band feature and dips in transmission spectrums close to zero, FOM* can have a value as large as 92,333/RIU. This unique feature makes the novel transmit-array metasurface a potential market candidate in the field of biosensors. Moreover, transmit-array metasurfaces with lossless materials offer great convenience by means of detecting either the reflectance spectrum or the transmission spectrum.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献