Numerical Investigation of a High-Quality Factor Refractometric Nano-Sensor Comprising All-Dielectric Metamaterial Structures

Author:

Asim Arslan1,Cada Michael12,Fine Alan3,Ma Yuan1,Ibraheem Farheen4

Affiliation:

1. Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada

2. IT4Innovations, VSB-Technical University of Ostrava, 17. Listopadu 15, 708 00 Ostrava-Poruba, Czech Republic

3. Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada

4. Department of Mathematics, Forman Christian College University (FCCU), Lahore 54600, Pakistan

Abstract

This paper proposes an optical sensor based on nanoscale metamaterial structures. The design of the sensor has been explored with respect to biosensing applications through numerical modeling and analysis. The sensor comprises silica substrate and diamond nanostructures, both of which represent dielectrics. The sensing principle is based on the detection of ambient refractive index change. As the analyte properties change, the refractive index changes, as well. The refractive index change has been detected by striking electromagnetic waves onto the structure and noting the spectral response. Ultraviolet waves have been utilized for recording spectral responses and evaluating sensor performance. The sensor displays multiple sharp resonance peaks in the reflected beam. By altering the refractive index of the analyte present around the sensor, the peaks can be seen choosing different wavelengths. The resonance peaks have been investigated to observe electric and magnetic field dipoles in the sensor structure. The spectrum peaks have also been studied to understand fabrication tolerances. The sensor displays a linear response, along with a large Quality (Q) factor. The maximum value of the achieved Quality (Q) factor for the proposed sensor is 1229 while operating across the refractive index range of 1.4–1.45. The claim has been supported by comparison with contemporary works on similar platforms. A range of other sensing parameters have also been calculated and benchmarked. Metamaterial-based optical sensors can provide smaller device sizes, faster response times and label-free detection.

Funder

NSERC (Natural Sciences and Engineering Research Council) of Canada

IT4Innovations National Supercomputing Center—Path to exascale project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3