Different Tactics of Synthesized Zinc Oxide Nanoparticles, Homeostasis Ions, and Phytohormones as Regulators and Adaptatively Parameters to Alleviate the Adverse Effects of Salinity Stress on Plants

Author:

Ahmed MostafaORCID,Decsi KincsőORCID,Tóth ZoltánORCID

Abstract

A major abiotic barrier to crop yield and profitability is salt stress, which is most prevalent in arid and semi-arid locations worldwide. Salinity tolerance is complicated and multifaceted, including a variety of mechanisms, and to adapt to salt stress, plants have constructed a network of biological and molecular processes. An expanding field of agricultural research that combines physiological measures with molecular techniques has sought to better understand how plants deploy tolerance to salinity at various levels. As the first line of defense against oxidative damage brought on by salt stress, host plants synthesize and accumulate several osmoprotectants. They (osmoprotectants) and other phytohormones were shown to serve a variety of protective roles for salt stress tolerance. Intrinsic root growth inhibition, which could be a protection mechanism under salty conditions, may be dependent on phytohormone-mediated salt signaling pathways. This article may also make it easier for scientists to determine the precise molecular processes underlying the ZnO-NPs-based salinity tolerance response for some plants. ZnO-NPs are considered to improve plant growth and photosynthetic rates while also positively regulating salt tolerance. When plants are under osmotic stress, their administration to zinc nanoparticles may also affect the activity of antioxidant enzymes. So, ZnO-NPs could be a promising method, side by side with the released osmoprotectants and phytohormones, to relieve salt stress in plants.

Funder

Hungarian Government and the European Union

European Regional Development Fund in the frame of the Széchenyi 2020 Program

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference79 articles.

1. Breeding for Salinity Resistance in Crop Plants: Where Next?;Flowers;Funct. Plant Biol.,1995

2. World Salinization with Emphasis on Australia;Rengasamy;J. Exp. Bot.,2006

3. Vargas, R., Pankova, E.I., Balyuk, S.A., Krasilnikov, P.V., and Khasankhanova, G.M. (2018). Handbook for Saline Soil Management, FAO, Eurasian Center for Food Security.

4. Plant salt tolerance;Zhu;Trends Plant Sci.,2001

5. Approaches to increasing the salt tolerance of wheat and other cereals;Munns;J. Exp. Bot.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3