Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification

Author:

Zhang JianmingORCID,Lu Chaoquan,Wang JinORCID,Yue Xiao-Guang,Lim Se-JungORCID,Al-Makhadmeh Zafer,Tolba AmrORCID

Abstract

Many remote sensing scene classification algorithms improve their classification accuracy by additional modules, which increases the parameters and computing overhead of the model at the inference stage. In this paper, we explore how to improve the classification accuracy of the model without adding modules at the inference stage. First, we propose a network training strategy of training with multi-size images. Then, we introduce more supervision information by triplet loss and design a branch for the triplet loss. In addition, dropout is introduced between the feature extractor and the classifier to avoid over-fitting. These modules only work at the training stage and will not bring about the increase in model parameters at the inference stage. We use Resnet18 as the baseline and add the three modules to the baseline. We perform experiments on three datasets: AID, NWPU-RESISC45, and OPTIMAL. Experimental results show that our model combined with the three modules is more competitive than many existing classification algorithms. In addition, ablation experiments on OPTIMAL show that dropout, triplet loss, and training with multi-size images improve the overall accuracy of the model on the test set by 0.53%, 0.38%, and 0.7%, respectively. The combination of the three modules improves the overall accuracy of the model by 1.61%. It can be seen that the three modules can improve the classification accuracy of the model without increasing model parameters at the inference stage, and training with multi-size images brings a greater gain in accuracy than the other two modules, but the combination of the three modules will be better.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3