Synoptic Weather Patterns and Atmospheric Circulation Types of PM2.5 Pollution Periods in the Beijing-Tianjin-Hebei Region

Author:

Gu Shijie1ORCID,Wu Shuai1,Yang Luoqi1,Hu Yincui1,Tian Bing1,Yu Yan1,Ma Ning1,Ji Pengsong1,Zhang Bo1

Affiliation:

1. School of Geographical Sciences, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Provincial Key Laboratory of Information Fusion and Intelligent Control, Hebei Normal University, Shijiazhuang 050024, China

Abstract

The variation of PM2.5 concentration in the atmosphere is closely related to the variation in weather patterns. The change in weather pattern is accompanied by the corresponding change in atmospheric circulation characteristics. It is necessary to explore the relationship between PM2.5 concentration changes and atmospheric circulation characteristics during pollution periods. In this paper, Lamb-Jenkinson objective classification method is applied to classify daily atmospheric circulation. The pollution periods are calculated and the atmospheric circulation variation rule is obtained. Combined with the physical parameter field (humidity, potential temperature, and potential height), a typical pollution period is analyzed. Additionally, the influence of atmospheric circulation type variation on PM2.5 concentration and transport channel during the pollution period was obtained. The results show that atmospheric circulation types in the study period are dominated by A-type (anticyclonic), N-type (north), and NE-type (northeast), indicating obvious seasonal differences, and the proportion of C-type (cyclonic) circulation was increased significantly in summer. During the pollution period analysis from 2 to 4 January 2019, atmospheric circulation type changed from N-type to NE-type (northeast), the wind direction changed from southeast wind, and the change of pressure gradient was consistent with the trend of the wind field. Moreover, the physical parameter field assisted in verifying the process of the pollution period from the conducive to the accumulation of PM2.5 to conducive to the deposition of pollutants and external transport. The research results would provide theoretical support for PM2.5 prediction during the pollution period and also supply a theoretical and technical basis for the establishment of ecological compensation standards for air pollution and atmospheric environmental control.

Funder

Shijiazhuang Science and Technology Plan Project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3