Predicting Air Quality from Measured and Forecast Meteorological Data: A Case Study in Southern Italy

Author:

Tateo Andrea1ORCID,Campanaro Vincenzo1,Amoroso Nicola23ORCID,Bellantuono Loredana34,Monaco Alfonso35ORCID,Pantaleo Ester35ORCID,Rinaldi Rosaria6ORCID,Maggipinto Tommaso35

Affiliation:

1. Apulia Region Environmental Protection Agency (ARPA Puglia), C.so Trieste 27, 70126 Bari, Italy

2. Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via A. Orabona 4, 70125 Bari, Italy

3. Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125 Bari, Italy

4. Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Università degli Studi di Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy

5. Dipartimento Interateneo di Fisica M. Merlin, Universitá degli Studi di Bari Aldo Moro, Via G. Amendola 173, 70125 Bari, Italy

6. Department of Mathematics and Physics E. De Giorgi, Universitá del Salento, Via Arnesano, 73100 Lecce, Italy

Abstract

A great deal of attention has been devoted to the analysis of particulate matter (PM) concentrations in various scenarios because of their negative effects on human health. Here, we investigate how meteorological conditions can affect PM concentrations in the peculiar case of the district of the city of Lecce in the Apulia region (Southern Italy), which is characterized by the highest tumor rate of the whole region despite the absence of nearby heavy industries. We present a unified machine learning framework which combines air quality and meteorological data, either measured on ground or forecast. Our findings show that the concentrations of PM10, PM2.5, NO2 and CO are significantly associated with the meteorological conditions and suggest that it is possible to predict air quality using either ground weather observations or weather forecasts.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3