Estimation of Daily Ground Level Air Pollution in Italian Municipalities with Machine Learning Models Using Sentinel-5P and ERA5 Data

Author:

Fania Alessandro12,Monaco Alfonso12ORCID,Pantaleo Ester12ORCID,Maggipinto Tommaso12,Bellantuono Loredana23,Cilli Roberto12ORCID,Lacalamita Antonio12,La Rocca Marianna12,Tangaro Sabina24ORCID,Amoroso Nicola25ORCID,Bellotti Roberto12

Affiliation:

1. Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Via G. Amendola 173, 70125 Bari, Italy

2. Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125 Bari, Italy

3. Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Università degli Studi di Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy

4. Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via A. Orabona 4, 70125 Bari, Italy

5. Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via A. Orabona 4, 70125 Bari, Italy

Abstract

Recent years have witnessed an increasing interest in air pollutants and their effects on human health. More generally, it has become evident how human, animal and environmental health are deeply interconnected within a One Health framework. Ground level air monitoring stations are sparse and thus have limited coverage due to high costs. Satellite and reanalysis data represent an alternative with high spatio-temporal resolution. The idea of this work is to build an Artificial Intelligence model for the estimation of surface-level daily concentrations of air pollutants over the entire Italian territory using satellite, climate reanalysis, geographical and social data. As ground truth we use data from the monitoring stations of the Regional Environmental Protection Agency (ARPA) covering the period 2019–2022 at municipal level. The analysis compares different models and applies an Explainable Artificial Intelligence approach to evaluate the role of individual features in the model. The best model reaches an average R2 of 0.84 ± 0.01 and MAE of 5.00 ± 0.01 μg/m3 across all pollutants which compare well with the body of literature. The XAI analysis highlights the pivotal role of satellite and climate reanalysis data. Our work can facilitate One Health surveys and help researchers and policy makers.

Funder

European Union—NextGenerationEU

Next Generation EU—“GRINS—Growing Resilient, INclusive and Sustainable” project

National Recovery and Resilience Plan (NRRP)—“PE9-Mission 4, Component C2, Intervention 1.3”

Italian Ministry of Enterprises and Made in ITaly (MIMIT) with the “Project CALLIOPE-Casa dell’Innovazione per il One Health”

Assessment of PM Exposure at intra-urban scale in preparation of MAIA mission (APEMAIA) project

Italian Space Agency, CALL FOR IDEAS “ATTIVITÀ SCIENTIFICHE A SUPPORTO DELLO SVILUPPO DELLE MISSIONI DI OSSERVAZIONE DELLA TERRA”

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3