Aerosol Optical Properties and Type Retrieval via Machine Learning and an All-Sky Imager

Author:

Logothetis Stavros-Andreas1,Giannaklis Christos-Panagiotis1,Salamalikis Vasileios2,Tzoumanikas Panagiotis1,Raptis Panagiotis-Ioannis3ORCID,Amiridis Vassilis4,Eleftheratos Kostas35ORCID,Kazantzidis Andreas1ORCID

Affiliation:

1. Laboratory of Atmospheric Physics, Physics Department, University of Patras, GR-26500 Patras, Greece

2. NILU—Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway

3. Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, GR-15784 Athens, Greece

4. Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Athens, Greece

5. Center for Environmental Effects on Health, Biomedical Research Foundation of the Academy of Athens, GR-11527 Athens, Greece

Abstract

This study investigates the applicability of using the sky information from an all-sky imager (ASI) to retrieve aerosol optical properties and type. Sky information from the ASI, in terms of Red-Green-Blue (RGB) channels and sun saturation area, are imported into a supervised machine learning algorithm for estimating five different aerosol optical properties related to aerosol burden (aerosol optical depth, AOD at 440, 500 and 675 nm) and size (Ångström Exponent at 440–675 nm, and Fine Mode Fraction at 500 nm). The retrieved aerosol optical properties are compared against reference measurements from the AERONET station, showing adequate agreement (R: 0.89–0.95). The AOD errors increased for higher AOD values, whereas for AE and FMF, the biases increased for coarse particles. Regarding aerosol type classification, the retrieved properties can capture 77.5% of the total aerosol type cases, with excellent results for dust identification (>95% of the cases). The results of this work promote ASI as a valuable tool for aerosol optical properties and type retrieval.

Funder

European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference84 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory Mission;Mishchenko;Bull. Am. Meteorol. Soc.,2007

3. Advances in the characterization of aerosol optical properties using long-term data from AERONET in Buenos Aires;Cuneo;Atmos. Pollut. Res.,2002

4. A satellite view of aerosols in the climate system;Kaufman;Nature,2002

5. Eck, T.F., Holben, B.N., Sinyuk, A., Pinker, R.T., Goloub, P., Chen, H., Chatenet, B., Li, Z., Singh, R.P., and Tripathi, S.N. (2010). Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. J. Geophys. Res. Atmos., 115.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3