Affiliation:
1. School of Civil Engineering, Central South University, Changsha 410075, China
2. National Engineering Laboratory for High-Speed Railway Construction, Changsha 410075, China
Abstract
Wind speed forecasting is advantageous in reducing wind-induced accidents or disasters and increasing the capture of wind power. Accordingly, this forecasting process has been a focus of research in the field of engineering. However, because wind speed is chaotic and random in nature, its forecasting inevitably includes errors. Consequently, specifying the appropriate method to obtain accurate forecasting results is difficult. The probabilistic forecasting method has considerable relevance to short-term wind speed forecasting because it provides both the predicted value and the error distribution. This study proposes a probabilistic forecasting method for short-term wind speeds based on the Gaussian mixture model and long short-term memory. The precision of the proposed method is evaluated by prediction intervals (i.e., prediction interval coverage probability, prediction interval normalized average width, and coverage width-based criterion) using 29 monitored wind speed datasets. The effects of wind speed characteristics on the forecasting precision of the proposed method were further studied. Results show that the proposed method is effective in obtaining the probability distribution of predicted wind speeds, and the forecast results are highly accurate. The forecasting precision of the proposed method is mainly influenced by the wind speed difference and standard deviation.
Funder
National Natural Science Foundations of China
Hunan Provincial Natural Science Foundation of China
Science and Technology Innovation Program of Hunan Province
Key R&D Plan Projects in Hunan Province
Innovation-Driven Project of Central South University
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献