A Review of Short-Term Wind Power Forecasting Based on Artificial Intelligence Methods
Author:
Publisher
Springer Nature Switzerland
Link
https://link.springer.com/content/pdf/10.1007/978-3-031-69483-7_5
Reference37 articles.
1. Sharifzadeh, M., Sikinioti-Lock, A., Shah, N.: Machine learning methods for integrated renewable power generation: a comparative study of artificial neural networks, support vector regression, and Gaussian process regression. Renew. Sustain. Energy Rev. 108, 513–538 (2019)
2. Global Wind Report (2023). https://gwec.net/globalwindreport2023/. Accessed 27 Mar 2024
3. Wang, Z., Wang, L., Revanesh, M., et al.: Short-term wind speed and power forecasting for smart city power grid with a hybrid machine learning framework. IEEE Internet of Things J. 10(21), 1875418765 (2023)
4. Zhou, Y., Wei, F., Kuang, K., et al.: Research on a deep ensemble learning model for the ultra-short-term probabilistic prediction of wind power. Electronics 13(3), 475 (2024)
5. Pijnenburg, P., Cao, B., Chang, L., et al.: A post‐forecast weighing algorithm to improve wind power forecasting capabilities. IET Renewable Power Generation 17(2), 296304 (2023)
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3