Physicochemical Analysis of Particle Matter from a Gasoline Direct Injection Engine Based on the China Light-Duty Vehicle Test Cycle

Author:

Wang Hao12,He Chao12,Yu Haisheng12,Li Jiaqiang12,Liu Xueyuan1

Affiliation:

1. School of Mechanics and Transportation, Southwest Forestry University, Kunming 650224, China

2. Key Laboratory of Vehicle Environmental Protection and Safety in Plateau Mountain Area of Yunnan University, Kunming 650224, China

Abstract

This paper investigated the physical and chemical properties of gasoline direct injection (GDI) engine particulate matter (PM). The physical properties mainly included the particulate aggregate morphology, primary particle size, and internal nanostructure. High-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) were used to obtain particle morphology information and to conduct image processing and analysis. The chemical characterization tests included X-ray photoelectron spectroscopy (XPS), energy dispersive scanning (EDS), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA). XPS can be used to observe the content of carbon and oxygen components and the surface carbon chemistry status, EDS can be used to obtain the elemental composition of particles, and TGA is used to analyze the oxidative kinetics of particles. Samples were collected from the exhaust emissions of a passenger vehicle compliant with China’s VI emission standards under China Light-Duty Vehicle Test Cycle (CLTC) test conditions. The study found that the particle morphology mainly comprised primary particles stacked on top of each other to form agglomerate structures, and the primary particles exhibited a core–shell structure. Analysis showed that carbon and oxygen were the predominant components of the particles, with other metallic elements also present. The XPS observations agreed with the FTIR results, indicating a small amount of oxygen was present on the particle surface and that the carbon components consisted mainly of sp2 hybridized graphite and sp3 hybridized organic carbon. The TGA results indicated high characteristic temperatures and low oxidation activity.

Funder

National Natural Science Foundation of China

Yunnan Provincial high level talent support project

The scientific research foundation of education bureau of Yunnan Province of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3