Analysis of the Impact of Meteorological Factors on Ambient Air Quality during the COVID-19 Lockdown in Jilin City in 2022

Author:

Wang Ju123,Shi Weihao1,Xue Kexin1ORCID,Wu Tong4,Fang Chunsheng123ORCID

Affiliation:

1. College of New Energy and Environment, Jilin University, Changchun 130012, China

2. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China

3. Jilin Province Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, China

4. China Coal Technology & Engineering Group Shenyang Engineering Company, Shenyang 113122, China

Abstract

This paper explored the changes of six significant pollutants (PM2.5, PM10, SO2, NO2, O3, and CO) in Jilin City during the coronavirus disease 2019 (COVID-19) epidemic in 2022, and compared them with the same period of previous years to analyze the impact of anthropogenic emissions on the concentration of pollutants; The Weather Research and Forecasting Community Multiscale Air Quality (WRF–CMAQ) model was used to evaluate the effect of meteorological factors on pollutant concentration. The results showed that except for O3, the concentrations of the other five pollutants decreased significantly, with a range of 21–47%, during the lockdown period caused by the government’s shutdown and travel restrictions. Compared with the same period in 2021, the decrease of PM2.5 was only 25% of PM10. That was because there was still a large amount of PM2.5 produced by coal-fired heating during the blockade period, which made the decrease of PM2.5 more minor. A heavy pollution event caused by adverse meteorological conditions was found during the lockdown period, indicating that only controlling artificial emissions cannot eliminate the occurrence of severe pollution events. The WRF–CMAQ results showed that the lower pollutant concentration in 2022 was not only caused by the reduction of anthropogenic emissions but also related to the influence of favorable meteorological factors (higher planetary boundary layer thickness, higher wind speed, and higher temperature).

Funder

Graduate Innovation Fund of Jilin University

Science and Technology Innovation Project of Shenyang Design & Research Institute Co., LTD.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IMPACT OF THE COVID-19 LOCKDOWN ON AIR POLLUTION IN AN INDUSTRIAL CITY IN NORTHEASTERN CHINA;Journal of Environmental Engineering and Landscape Management;2023-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3