Abstract
AbstractThe less improvement of ambient visibility suspects the government’s efforts on alleviating PM2.5 pollution. The COVID-19 lockdown reduced PM2.5 and increased visibility in Wuhan. Compared to pre-lockdown period, the PM2.5 concentration decreased by 39.0 μg m−3, dominated by NH4NO3 mass reduction (24.8 μg m−3) during lockdown period. The PM2.5 threshold corresponding to visibility of 10 km (PTV10) varied in 54–175 μg m−3 and an hourly PM2.5 of 54 μg m−3 was recommended to prevent haze occurrence. The lockdown measures elevated PTV10 by 9–58 μg m−3 as the decreases in PM2.5 mass scattering efficiency and optical hygroscopicity. The visibility increased by 107%, resulted from NH4NO3 extinction reduction. The NH4NO3 mass reduction weakened its mutual promotion with aerosol water and increased PM2.5 deliquescence humidity. Controlling TNO3 (HNO3 + NO3−) was more effective to reduce PM2.5 and improve visibility than NHx (NH3 + NH4+) unless the NHx reduction exceeded 11.7–17.5 μg m−3.
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science,Environmental Chemistry,Global and Planetary Change
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献