Analysis of Temperature Variability, Trends and Prediction in the Karachi Region of Pakistan Using ARIMA Models

Author:

Amjad Muhammad,Khan AliORCID,Fatima Kaniz,Ajaz Osama,Ali Sajjad,Main Khusro

Abstract

In this paper, the average monthly temperature of the Karachi region, Pakistan, has been modelled. The time period of the procured dataset is from January 1989 to December 2018. The Autoregressive Integrated Moving Average (ARIMA) modelling technique in conjunction with the Box–Jenkins approach has been applied to forecast the average monthly temperature of the study area. A total of 83.33% of the trained dataset is used for construction of the model, and the remaining 16.67% of the dataset is used for the validation of the model. The best-fitted model is identified as ARIMA (2, 1, 4), generated on the basis of minimum values of the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) procedures. The accuracy parameters considered are Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Both parameters show that the model is 98.152% and 98.413% accurate, respectively. In addition, the Autoregressive Conditional Heteroscedasticity-Lagrange Multiplier (ARCH-LM) test has been conducted to check the presence of heteroscedasticity in the residuals of the identified model. This test shows no heteroscedasticity present in the residual series. By means of Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots, the most appropriate orders of the ARIMA model are determined and evaluated. The model has been employed to investigate the time series variables’ precise impact on the scale of the regional warming scenario. Accordingly, the created model can help in determining future strategies related to weather conditions in the Karachi region. From the forecast result, it is found that the average temperature seems to show an increasing trend. Such an increasing trend can potentially upset the weather conditions and economic activities of the coastal area of Pakistan.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3