Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model

Author:

Betts Richard A.12ORCID,Alfieri Lorenzo3,Bradshaw Catherine2,Caesar John2,Feyen Luc3,Friedlingstein Pierre4,Gohar Laila2,Koutroulis Aristeidis5,Lewis Kirsty2,Morfopoulos Catherine1,Papadimitriou Lamprini56,Richardson Katy J.2,Tsanis Ioannis5,Wyser Klaus7

Affiliation:

1. College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4PS, UK

2. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK

3. European Commission -- Joint Research Centre, 21027 Ispra, Italy

4. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QE, UK

5. School of Environmental Engineering, Technical University of Crete—TUC, Chania 73100, Greece

6. Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, UK

7. Rossby Centre, SMHI, 601 76 Norrköping, Sweden

Abstract

We projected changes in weather extremes, hydrological impacts and vulnerability to food insecurity at global warming of 1.5°C and 2°C relative to pre-industrial, using a new global atmospheric general circulation model HadGEM3A-GA3.0 driven by patterns of sea-surface temperatures and sea ice from selected members of the 5th Coupled Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.5 concentration scenario. To provide more detailed representations of climate processes and impacts, the spatial resolution was N216 (approx. 60 km grid length in mid-latitudes), a higher resolution than the CMIP5 models. We used a set of impacts-relevant indices and a global land surface model to examine the projected changes in weather extremes and their implications for freshwater availability and vulnerability to food insecurity. Uncertainties in regional climate responses are assessed, examining ranges of outcomes in impacts to inform risk assessments. Despite some degree of inconsistency between components of the study due to the need to correct for systematic biases in some aspects, the outcomes from different ensemble members could be compared for several different indicators. The projections for weather extremes indices and biophysical impacts quantities support expectations that the magnitude of change is generally larger for 2°C global warming than 1.5°C. Hot extremes become even hotter, with increases being more intense than seen in CMIP5 projections. Precipitation-related extremes show more geographical variation with some increases and some decreases in both heavy precipitation and drought. There are substantial regional uncertainties in hydrological impacts at local scales due to different climate models producing different outcomes. Nevertheless, hydrological impacts generally point towards wetter conditions on average, with increased mean river flows, longer heavy rainfall events, particularly in South and East Asia with the most extreme projections suggesting more than a doubling of flows in the Ganges at 2°C global warming. Some areas are projected to experience shorter meteorological drought events and less severe low flows, although longer droughts and/or decreases in low flows are projected in many other areas, particularly southern Africa and South America. Flows in the Amazon are projected to decline by up to 25%. Increases in either heavy rainfall or drought events imply increased vulnerability to food insecurity, but if global warming is limited to 1.5°C, this vulnerability is projected to remain smaller than at 2°C global warming in approximately 76% of developing countries. At 2°C, four countries are projected to reach unprecedented levels of vulnerability to food insecurity. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference42 articles.

1. United Nations. 2010 Report of the Conference Parties on its fifteenth session held in Copenhagen 7 to 19 December 2009. Addendum. Part Two: Action taken by the Conference of the Parties at its fifteenth session. See http://unfccc.int/resource/docs/2009/cop15/eng/11a01.pdf.

2. United Nations. 2016 Report of the Conference Parties on its twenty-first session held in Paris 30 November to 13 December 2015. Addendum Part two: Action taken by the Conference of the Parties at its twenty-first session. See http://unfccc.int/resource/docs/2015/cop21/eng/10a01.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3